If $\alpha ,\,\beta ,\,\gamma $ and $\delta $ are the solutions of the equation $\tan \left( {\theta  + \frac{\pi }{4}} \right) = 3\,\tan \,3\theta $ , no two of which have equal tangents, then the value of $tan\, \alpha  + tan\, \beta + tan\, \gamma + tan\, \delta $ is

  • A

    $1$

  • B

    $-1$

  • C

    $2$

  • D

    $0$

Similar Questions

The number of solutions of the equation $\sqrt[3]{{\sin \theta  - 1}} + \sqrt[3]{{\sin \theta }} + \sqrt[3]{{\sin \theta  + 1}} = 0$ in $[0,4\pi]$ is 

The solution of the equation $4{\cos ^2}x + 6$${\sin ^2}x = 5$

The smallest positive root of the equation $tanx\,  -\,  x = 0$ lies on

The value of expression $\frac{{2(\sin {1^o} + \sin {2^o} + \sin {3^o} + ..... + \sin {{89}^o})}}{{2(\cos {1^o} + \cos {2^o} + .... + \cos {{44}^o}) + 1}}$ equals

The value of the expression

$\frac{{\left (sin 36^o + cos 36^o - \sqrt 2  sin 27^o)( {\sin {{36}^0} + \cos {{36}^0} - \sqrt 2 \sin {{27}^0}} \right)}}{{2\sin {{54}^0}}}$ is less than